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Field-line transport in stochastic magnetic fields:
Percolation, Lévy flights, and non-Gaussian dynamics
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The transport of magnetic field lines is studied numerically in the case where strong three-
dimensional magnetic fluctuations are superimposed to a uniform average magnetic field. The mag-
netic percolation of field lines between magnetic islands is found, as well as a non-Gaussian regime
where the field lines exhibit Lévy random walks, changing from Lévy flights to trapped motion.
Anomalous diffusion laws (Az?) ox s* with @ > 1 and a < 1 are found for low fluctuation levels,
while normal diffusion and Gaussian random walks are recovered for sufficiently high fluctuation

levels.

PACS number(s): 52.25.Fi, 02.50.Ey, 95.30.Qd

In this paper we report results on the transport of field
lines in a stochastic magnetic field. Particle diffusion due
to the random walk of field lines in the plane perpendic-
ular to the mean magnetic field has been considered for
a long time as the cause of loss of plasma confinement in
fusion devices [1-3] and of fast perpendicular transport in
many astrophysical phenomena [4]. In the magnetostatic
approximation the field-line equations can be written as

dr B(r)

ds = B @)

where B(r) is the magnetic field at a generic point r,
and s is the field-line length. The magnetic field-line
transport law, on which particle transport depends even
in the case where collisions are important [2,5], can be
obtained from the study of the above equations. While
much numerical effort has been devoted to the study of
particle transport in toroidal fusion devices [6], where the
geometry is complicated but the number of wave modes
involved is not too large, less attention has been given to
the uniform average field case with a very large number
of wave modes, which models astrophysical situations in
the presence of strong magnetohydrodynamic turbulence.

Here we present the results of the simulation of a three-
dimensional turbulent magnetic field in plane geometry,
given by B = Bge, + 0B. The equation for the magnetic
surfaces can be written as

B.Vy =0, (2)

where ¥(z,y,z) = const denotes a magnetic surface.
Provided that % is a bounded function—as it must be
for a periodic magnetic field like that considered in the
following—for every plane z = zo there will be a 3 con-
tour, namely, the separatrix, that percolates all over the
plane [7]. This can be viewed as the contour that sepa-
rates the wells of ¢ from the hills of 9, so that the cross
sections of the magnetic surfaces are composed by “mag-
netic islands” embedded in a web of separatrices. In the
case that 0B = /(6B - éB) <« By the magnetic surfaces
are nearly cylinders; further, in a periodic turbulent field
the Kolmogorov-Arnold-Moser (KAM) theorem applies,
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and “good” (closed) magnetic surfaces exist. Increas-
ing the perturbation level, some of the magnetic surfaces
are “destroyed” because of stochasticity [1], and the thin
regions next to the separatrices are the first to become
stochastic, due to the presence of the hyperbolic points
of ¥(x,y, z0). Therefore magnetic field-line transport is
concentrated on thin sheaths surrounding good magnetic
surfaces (magnetic percolation). The magnetic field-line
equations correspond to a 1.5 degrees of freedom Hamil-
tonian system and thus should have the properties of
these systems. As long as B <« By, the measure of
the stochastic region will be small. In such a situation
of weak chaos, transport can be inherently non-Gaussian,
i.e., anomalous, in the sense that {(Az2) o s, with o # 1
[8] (here and in the following, Az; = z; — (z;), and
Ty =z, 2 = y). As the fluctuation amplitude is further
increased, the good magnetic surfaces are progressively
destroyed, and global stochasticity is attained. There-
fore a transition from an anomalous regime to a normal
diffusion regime where (Az?) oc s can be expected.

For the numerical simulation, we consider a fluctuating
magnetic field given by

SB(r) = 3 6B, (K)e, (k) explik -t +¢f)],  (3)

k,o

where 6B, (k) is the Fourier amplitude of the mode with
wave vector k and polarization o, e, (k) are the polariza-
tion umit vectors, V-B = 0 implies k-e, (k) = 0, and ¢
are random phases, chosen to simulate a realization of
an ensemble of stochastic magnetic fields. The basic pe-
riodicity is that of the cubic simulation box of side L, so
that k = 2m(ng,ny,n,)/L. The Fourier amplitudes for
an isotropic power law spectrum with correlation length
A are given by [9]

5By (k) = C(zﬂ_/L)s/z/(kz)\z + 1)“//4-+—1/27 (4)

where C is a normalization constant, k the wave number,
and « the spectral index. For the present calculations
A = L, while the spectral index is fixed as v = 3/2,
which corresponds to the Kraichnan spectrum for fully
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developed magnetohydrodynamic turbulence [10]. The
spectrum is truncated at kgmax = 2wnN/L, where N =
L/Amin, With Anin the smallest turbulence wavelength
present, and the fluctuation amplitude is defined as A =
8B/By. At each integration step, the sum of ~ 4N3
components should be evaluated many times. In order
to save computer time, we introduce a three-dimensional
(3D) lattice with grid points spaced by Apyin/10, on which
the magnetic field components are computed exactly [11].
Then, during the integration of Eq. (1), the magnetic field
at a generic point is obtained by quadratic interpolation
of the ten nearest grid points. A Runge-Kutta sixth order
integrator in double precision is used.

Extensive simulations have been performed for N =
3,6,9, and 12, corresponding to 61, 462, 1535, and 3576
wave vectors, respectively, each having two independent
polarizations. Since the simulated field is periodic, the
onset of stochasticity can be studied by means of the
Poincaré surfaces of section obtained by drawing for a
given field line a point in the (z,y) plane for each in-
teger value of z/L. For A <« 1 magnetic islands are
found, separated from each other by percolating separa-
trices. Increasing A, the field-line motion is more and
more chaotic, until the last KAM torus is destroyed.
Nevertheless, field-line transport is not yet statistically
homogeneous: as shown for N = 12 and A = 0.30 in
Fig. 1, field lines propagate preferentially along the rem-
nants of the separatrices. This means that even in a
regime of global stochasticity field lines have memory of
the magnetic configuration obtained for lower fluctua-
tion levels. Also, field lines can be trapped for some time
in the stochastic region corresponding to a former mag-
netic island, and then travel long paths, which are called
“Lévy flights” [12-15]. This is elucidated in Fig. 2, where
a sample field line projected in the zy plane is plotted.
The trapping and subsequent Lévy flight of field lines
is apparent. In the case of Lévy flights transport is su-
perdiffusive, the limit distribution of field lines is not a
Gaussian but one of the Lévy stable laws, and the set of
points of the Poincaré section of a field line is a fractal
[14]. Note that increasing A diminishes the probability
of long flights and of long trapping, and therefore dimin-
ishes the average length of percolation in the stochastic
layer.

A quantitative study of magnetic field-line transport is
carried out by computing (Az?) as a function of s. These
averages are computed over an ensemble of 2000 lines of
force integrated up to either s = 500 or s = 1000 (all
the lengths are normalized to L). The integration length
has been chosen so as to attain the long time behavior
of the random walk, checking that asymptotic values are
obtained. The transport law is found to be

(Az?) = 2D;s™, s — oo. (5)
Here, a; characterizes the random walk law: o; = 1 in
the diffusion regime, a; = 2 in the ballistic regime, and
1 < a; < 2 in the case of Lévy random walk [13,14,8]. In
the case of trapping a; < 1 (subdiffusive regime). The
results for o, and a, as a function of A are reported
in Fig. 3 for the various N. Both superdiffusive and
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FIG. 1. Poincaré surface of section for N = 12 and

A = 0.30. Thirty field lines are plotted for 500 integer values
of z. Dimensionless units.

subdiffusive behavior is found for the motion in the zy
plane for small values of A, and a diffusion regime is
reached for larger values of A. Because of the increase
of stochasticity of field lines with A, the probability of
going from a “trapped” to a “percolating” path or vice
versa increases, see Fig. 2, so that the field-line motion
approaches a Gaussian random walk with a finite scale
length and the ordinary diffusion behavior is recovered.
Note that for low A the character of transport is differ-
ent in the z and y directions. This is due to the fact
that usually the percolating field lines go from one side
to the opposite of the simulation box, and keep moving
in the same direction because of the periodicity of §B.

1 L
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FIG. 2. Projection on the zy plane of a field line with given
initial conditions (indicated by an asterisk) for N = 9. Di-
mensionless units. Left: A = 0.45. Right: A = 0.70.
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FIG. 3. The anomalous diffusion exponents o, and a, ver-
sus the fluctuation amplitude A. Dimensionless units. Circles:
N = 3; crosses: N = 6; squares: N = 9; triangles: N = 12.

On the other hand, this anisotropy can be flipped over
by changing the random phases, as has been verified.

The Lévy random walk corresponds to a “broad” prob-
ability distribution p(l) of making a step of length / in a
given time interval of the form p(l) ~ =+ for [ — oo
[14]. The cases with p > 2 correspond to a Gaussian ran-
dom walk law, whereas p < 2 gives rise to a random walk
law of the form of Eq. (5), with a@ = 2/ [14] [in such a
case, the second order moment of p(!)—the mean square
jump length—is infinite]. Therefore we can estimate the
values of the exponent u of the probability distribution
p(l) by means of the numerically obtained values of a.
Note that when o > 1, pu corresponds to the fractal di-
mension of the points constituting the random walk [13].
On the other hand, when a < 1 the microscopic dy-
namics evolves on a fractal time and the random walk
is intermittent [15] (in the present case, s is the timelike
parameter). This can be described by a “broad” proba-
bility distribution ¢(s) of waiting “times” s between two
disentangled steps of the form g(s) ~ s~ 1) for s — oo,
and a = v results for v < 1 [14,15].

An indicator of non-Gaussian dynamics is the kurto-
sis of the distribution function of field lines, defined as
K; = (Az})/(Az?)2. For a Gaussian distribution func-
tion K; = 3, while K; > 3 (K; < 3) corresponds to
enhanced (reduced) importance of the tails of the dis-
tribution. We have computed K, and K, for all the
magnetic configurations studied, and the results at the
end of the integration time are displayed in Fig. 4. As
can be seen, large departures from K; = 3 are found
for low to moderate values of A, but the kurtoses tend
to the Gaussian value roughly when the corresponding
anomalous diffusion exponent a; tends to one. For the
z direction, where trapping of field lines prevails at low
A, we have K, < 3 for A = 0.05, but increasing the fluc-
tuation amplitude K, surpasses 3 before settling to the
Gaussian value. This means that in the regime where
several magnetic surfaces are destroyed some field lines
experience Lévy flights in the z direction, too, increasing
the relevance of the tails of the distribution, even if the
overall behavior is subdiffusive because most field lines
are trapped.

FIG. 4. The kurtoses K, and K, versus A (same symbols
as in Fig. 3). Dimensionless units.

We consider that we are in the Gaussian regime when
both |a; — 1| < 0.1 and |K; — 3| < 0.3 (a 10% error crite-
rion). In such a case we can compare the coefficients D;
of Eq. (5) to the quasilinear diffusion coefficient obtained

from Eq. (4) for kmax — 00,
§B\?
—_— 6
A( BO) . ®

vay—1 T(v/2+1)
Dar = "¢ r
v TO/2+172)
where I' is Euler’s gamma function, and to the recently
proposed percolation scaling D,, « (§B/B,)7/*° [5]. D,
Dy, and D, = D, + D, are reported in Fig. 5. First
of all, note that for both the  and y directions the
Gaussian regime is reached the sooner, the higher N.
This is best seen in the lower panel of Fig. 5, where
D, is plotted, and matches with the fact that global
stochasticity is attained earlier with a longer spectrum,
since more hyperbolic points and larger gradients of B
are present. Indeed, the rate of exponential separation
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FIG. 5. Computed perpendicular diffusion coefficients
(same symbols as in Fig. 3) compared to the quasilinear values
(dashed line). Dimensionless units.
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of field lines depends on the gradient of B [2]. Trans-
port appears to be markedly anisotropic even well into
the Gaussian regime, especially for N = 3 and N = 6.
For the magnetic configuration obtained with N = 3 the
anisotropy changes from prevalently along the y axis in
the non-Gaussian regime (low A) to prevalently along the
z axis in the Gaussian regime, a change which is clearly
seen also in the Poincaré sections and in the values of
(Az?) and (Ay?). Although this irregularity could be at-
tributed to the particular realization of the ensemble of
magnetic fields which we have simulated, these results in-
dicate that field-line transport is quite complex, depend-
ing on the deep dynamics of field lines in the remnants
of separatrices and magnetic islands [8]. More regularity
is found in D, as a function of NV and of A, since the
anisotropy effects are averaged out. Note in particular
that (i) D, is always smaller than the quasilinear diffu-
sion coefficient, as it should be when A ~ 1; (ii) at a given
fluctuating energy density level, D is larger for a smaller
N, in agreement with the fact that more energy is found
at longer wavelengths and that Dgr ~ A(6B/Bo)? [3];
(iii) for N = 9 and N = 12 transport is nearly isotropic
and the values of D, are pretty close, a fact which in-
dicates that we are near to the saturation of D, as a
function of the number of wave modes.

Inspection of the lower panel of Fig. 5 also shows that
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the scaling of D with the fluctuation amplitude is more
similar to the quasilinear than to the percolation one.
The (§B/By)7/1° scaling was obtained by Isichenko [5]
for a monoscale turbulence in the case § B/By < 1 and
Aj/AL > 1 (here, A and A, are the parallel and trans-
verse correlation lengths, respectively), whereas we have
6B/By ~ 1 and an isotropic spectrum for B. This can
explain why Isichenko’s scaling is not reproduced.

In conclusion, our simulation of stochastic magnetic
fields shows that for low fluctuation levels magnetic field-
line transport is non-Gaussian and the random walk is
composed of trapping in the remnants of the KAM tori
and of long ballistic flights (Lévy flights) in the perco-
lation layer. The transport law is anomalous, (Az2) o
2D;s* with a > 1 and a < 1. On the other hand, for
higher fluctuation levels a Gaussian diffusion regime is
attained; however, the perpendicular diffusion coefficient
is smaller than the quasilinear value, and transport may
be rather anisotropic.
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